Урок в 8-м классе по теме Многоугольник и его элементы icon

Урок в 8-м классе по теме Многоугольник и его элементы



НазваниеУрок в 8-м классе по теме Многоугольник и его элементы
страница1/3
Дата конвертации16.09.2012
Размер326.21 Kb.
ТипУрок
источник
  1   2   3

Урок в 8-м классе по теме « Многоугольник и его элементы"

Цели урока:

  • Образовательные: изучение понятия многоугольник, его элементы; вписанный и описанный многоугольник;

  • Развивающие: активизация познавательной деятельности учащихся через решение практических задач, умение выбирать правильное решение, лаконично излагать свои мысли, анализировать и делать выводы.

  • Воспитательные: организация совместной деятельности, воспитание у учащихся интереса к предмету, доброжелательности, умения выслушивать ответы товарищей.

Ход урок:

1. Организационный момент

^ 2. Мотивация урока.

Дорогие ребята!

Я надеюсь, что этот урок пройдет интересно, с большой пользой для всех. Очень хочу, чтобы те, кто еще равнодушен к царице всех наук, с нашего урока ушел с глубоким убеждением, что геометрия – интересный и нужный предмет.

Французский писатель XIX столетия Анатоль Франс однажды заметил: “Учиться можно только весело… Чтобы переваривать знания, надо поглощать их с аппетитом”.

Давайте последуем совету писателя на сегодняшнем уроке: будьте активны, внимательны, поглощайте с большим желанием знания, которые пригодятся вам в дальнейшей жизни.

^ 3. Актуализация опорных знаний.

Какие геометрические фигуры нами уже изучены?

Каковы их элементы?

Фронтальный опрос:

  • Какая фигура называется четырехугольником?

  • Какие вершины четырехугольника называются соседними, какие противолежащими?

  • Что такое диагонали четырехугольника?

  • Какие стороны четырехугольника называются соседними? Какие стороны называются противолежащими?

  • Что такое периметр четырехугольника?

  • Как проверить, можно ли из четырех данных отрезков построить четырехугольник?

  • Чему равна сумма внутренних углов четырехугольника?

  • Могут ли все углы четырехугольника быть тупыми? острыми? прямыми?

^ 4. Изучение нового материала.

Среди множества различных геометрических фигур на плоскости выделяется большое семейство МНОГОУГОЛЬНИКОВ.

Названия геометрических фигур имеют вполне определенный смысл. Присмотритесь внимательно к слову “многоугольник”, и скажите из каких частей оно состоит. Слово “многоугольник” указывает на то, что у всех фигур этого семейства “много углов”.

Подставьте в слово “многоугольник” вместо части “много” конкретное число, например 5. Вы получите ПЯТИУГОЛЬНИК. Или 6. Тогда – ШЕСТИУГОЛЬНИК. Заметьте, сколько углов, столько и сторон, поэтому эти фигуры вполне можно было бы назвать и многосторонниками.

На рисунке геометрические фигуры. Используя рисунок, назовите эти фигуры.



Каким наименьшим числом можно заменить “много” в многоугольнике? (Ответ: 3)

Фигура, ограниченная простой замкнутой ломаной, называется многоугольником. Вершины ломаной называются вершинами многоугольника, стороны ломаной - сторонами многоугольника, а углы, образованные соседними сторонами, - углами многоугольника. Точки многоугольника, не принадлежащие его сторонам, называются внутренними.

Периметром многоугольника называется сумма длин всех его сторон.

Многоугольник, у которого n углов называется n - угольником. Многоугольник называется выпуклым, если вместе с любыми двумя своими точками он содержит и соединяющий их отрезок.

Любой треугольник выпуклый. Среди многоугольников, с числом углов большим трех, могут быть выпуклые и невыпуклые.

Диагональю многоугольника называется отрезок, соединяющий его несоседние вершины.

Исследовательская работа по группам.

Каждая группа работает по учебно-исследовательской карте.

1.Задача.

Чему равна сумма углов выпуклого пятиугольника?

2.Проблема.

Как зависит сумма углов выпуклого n-угольника от числа углов

многоугольника и от числа треугольников, на которые он разбивается

диагоналями, проведенными из одной вершины?

3.Пробы.


















1 проба-1800 2 проба-3600 3 проба-5400 4 проба-7200

4.Таблица результатов.

Пробы

1

2

3

4

Число углов

3

4

5

6

Число треугольников

1

2

3

4

Сумма углов

1800

3600

5400

7200

Вывод: Формула для суммы внутренних углов n-угольника. 180° (n-2 ).

Сумма внешних углов выпуклого многоугольника не зависит от числа сторон п- угольника и равна 360.

Вписанным в круг многоугольником называется такой многоугольник, вершины которого лежат на окружности. Описанным около круга многоугольником называется такой многоугольник, стороны которого касаются окружности.



Построить № 667, 668(1).

^ 5. Закрепление нового материала.

Решение задач по рисункам устно №655, 657, 662(1, 2).

Решить № 663(1), 664(1), 665(2), 671(устно), 673(1), 666(устно).

6. Физминутка для глаз.

-Не поворачивая головы, обведите взглядом стену класса по периметру по часовой стрелке, классную доску по периметру против часовой стрелки, треугольник, изображенный на стенде по часовой стрелке и равный ему треугольник против часовой стрелки. Поверните голову налево и посмотрите на линию горизонта, а теперь на кончик своего носа. Закройте глаза, сосчитайте до 5, откройте глаза и …

Мы ладонь к глазам приставим,
Ноги крепкие расставим.
Поворачиваясь вправо,
Оглядимся величаво.
И налево надо тоже
Поглядеть из под ладошек.
И – направо! И еще
Через левое плечо!
а теперь продолжим работу.

^ 7. Самостоятельная работа учащихся.

Решить № 665(1).

8.Итоги урока. Рефлексия.

Что больше всего тебе запомнилось на уроке?

Что удивило?

Что понравились больше всего?

Каким ты хочешь увидеть следующий урок?

Домашнее задание: выучить п.15, вопросы с.128, решить №664(2), 665(3), 668(2), 673(2).


^ Тема: Площадь. Площадь прямоугольника и квадрата.

Цели урока:

 Обучающие: формирование понятия площади, организация работы учащихся по самостоятельному нахождению способов сравнения площадей фигур, повторить формулы для определения площади прямоугольника и квадрата.

 Развивающие: развитие мышления и элементов познавательной деятельности (смекалки, умений сравнивать, анализировать), умения работать в проблемной ситуации.

 Воспитательные: воспитание интереса и любви к предмету через содержание учебного материала, умения применять преемстенность в изучении отдельных тем математики.

Ход урока.

^ 1. Организационный момент.

Чтобы спорилось нужное дело,

Чтобы в жизни не знать неудач,

В математики мир отправимся смело,

В мир примеров и разных задач.

А девизом нашего урока буду такие слова:

Думать - коллективно!

Решать - оперативно!

Отвечать - доказательно!

Бороться - старательно!

И открытия нас ждут обязательно!

^ 2. Мотивация урока.

В обычной жизни на каждом шагу мы встречаемся с понятием “площадь”. Что такое “площадь”, знает каждый. Каждый понимает смысл слов: площадь комнаты, площадь садового участка. Подумайте и самостоятельно ответьте на вопрос? что такое “площадь”? И вы увидите, что не так-то это просто. Даже математики смогли создать соответствующую математическую теорию сравнительно недавно. Правда, это никому не мешало успешно использовать понятие площади и в науке, и на практике с незапамятных времен.

Измерение площадей считают одним из самых древних разделов геометрии; в частности название “геометрия” (т.е. “землемерие”) связывают именно с измерением площадей. Согласно легенде, эта наука возникла в Древнем Египте, где после каждого разлива Нила приходилось заново производить разметку участков, покрытых плодоносным илом, и вычисление их площадей.

У римлян мерой земляных участков был югер (от «югум» — «ярмо»). Это участок земли, вспахиваемый за день двумя волами, впряженными в деревянное ярмо.

В древней Руси слабо знали основы геометрии и испытывали трудности их приложения к измерению земельных участков неправильной формы. С течением времени для пахотных земель главенствующую роль стала играть четверть — площадь, на которую высевали четверть (меру объема) ржи.

И сегодня мы с вами определим четкое понятие «площади фигуры».

^ 3. Актуализация опорных знаний.

Площади каких фигур вы уже умеете вычислять?

4. Объяснение нового материала

– Что показывает площадь? (Сколько места занимает фигура на плоскости)

- у вас на партах разные фигуры, сравните их, выберите самую большую, самую маленькую.

Как измерить площадь фигуры? Сначала нужно выбрать единицу площади, т.е. указать единичный квадрат, т.е. квадрат, сторона которого служит единицей длины.

При выбранной единице измерения площадей площадь каждого многоугольника показывает сколько раз единица измерения и ее части укладываются в данном многоугольнике.

- у вас на партах в конвертах различные единицы измерения площади- квадраты, со стороной 1 см, 1 дм. Какую единицу вы выберите, чтобы найти площадь вашего прямоугольника? Работая в парах, найдите площадь фигуры 1. (Ученики укладывают квадраты, со стороной 1 см. в фигуре, сообщают учителю количество) Мы нашли площадь нашей фигуры.

Запишем S = … см2

А чтобы найти площадь моей фигуры, квадрат с какой стороной нужно выбрать? (Учитель показывает большую фигуру)

К доске выходят несколько учеников, выбирают квадраты, укладывают на фигуре, сообщают площадь.

Чтобы найти площадь класса, квадрат с какой стороной нужно выбрать? Удобно ли пользоваться теми, что есть у нас?



Найдите площадь каждой фигуры, изображенной на рисунке 68, если условиться, что длина стороны каждой клетки равна 1 см.

^ Итак, чтобы найти площадь фигуры, нужно:

1. Выбрать единицу измерения, посчитать, сколько раз эта единица укладывается в данной фигуре.

Если многоугольник составлен из нескольких многоугольников, то его площадь равна сумме площадей этих многоугольников. Это свойство площади многоугольника.

Равные многоугольники имеют равные площади.

Найдите площадь прямоугольника, который есть у вас.

Удобно ли каждый раз укладывать единичные квадраты в наших фигурах?

Предложите способ, который позволяет вычислить площадь прямоугольника, не используя способ подсчета уместившихся квадратов.

S = a * b

А как называется прямоугольник, у которого длина и ширина равны? (Квадрат)

Он давно знакомый мой.

Каждый угол в нем прямой,

Все четыре стороны одинаковой длины.

Вам его представить рад,

А зовут его …(квадрат).

Как найти его площадь?

S = a∙a = a2

При выбранной единице измерения площадей площадь каждого многоугольника показывает сколько раз единица измерения и ее части укладываются в данном многоугольнике.



Площадь многоугольника — положительная величина, численное значение которой обладает такими свойствами:

Свойство 1°. Равные многоугольники имеют равные площади.

^ Свойство 2°. Если многоугольник состоит из нескольких многоугольников, то его площадь равна сумме площадей этих многоугольников.

Свойство 3°. Площадь квадрата равна квадрату его стороны.

Найти площадь фигуры.



^ 5. Первичное закрепление нового материала.

Решить:

устно № 686, 687, 688, 691;

письменно № 688, 694(1, 2), 697(1), 693.

6. Самостоятельная работа учащихся.

Найдите площадь треугольника ВСМ




Найти: SМВС−?

Ответ: SВСМ=14 см2

Есть ли вопросы, как находить площадь сложной плоской фигуры?


7. Итог урока.

Работа с карточками «+», «-».

Верно ли утверждение.

1. Равные фигуры имеют равные площади.

2. Неравные фигуры имеют различные площади.

3. Если фигуры равновеликие, то они равны.

4. Если площадь квадрата равна сумме площадей двух других квадратов, то длина стороны большего квадрата равна сумме длин сторон этих квадратов.

5. Если сторону квадрата увеличить в 2 раза, то его площадь увеличится в 2 раза.

Сформулировать свойства площадей.

^ 8. Рефлексия. Д/з.

Ребята, продолжите предложения, написанные на доске.

На уроке сегодня я узнал…

Мне было интересно, когда…

Я так и не понял…

Знания, полученные на уроке, мне пригодятся…

Выучить п.16, вопросы с.136. Решить № 692, 694(3, 4), 697(2).

Творческое задание: сообщение «Как измеряли площадь в старину».


^ Урок геометрии в 8-м классе по теме "Площадь параллелограмма"

Цели урока:

  • Повторить свойства площадей фигур; формулы площади прямоугольника и квадрата; вывести формулу для нахождения площади параллелограмма; рассмотреть задачи с её применением.

  • Развивать умения анализировать, сопоставлять, логически мыслить, обобщать; развивать внимание, память, активность и самостоятельность.

  • Воспитывать ответственное отношение к учебному труду, настойчивость для достижения конечного результата, умение работать в коллективе; воспитывать в учащихся личностную рефлексию: стал ли он сам для себя изменяющимся субъектом деятельности.

Ход урока.

^ 1. Организационный момент.

2. Мотивация урока.

Ребята, урок я начну с высказывания Г.Галилея: «Геометрия является самым могущественным средством для изощрения наших умственных способностей и дает нам возможность правильно мыслить и рассуждать». Я хочу, чтобы вы на уроке думали и рассуждали.

^ 3. Актуализация опорных знаний. Проверка д/з.

П
6 cм
о рисунку составить задачу и решить.


S2


?
S1=S2.

S1

4 см
1)


2) А D

SABCD = Q

SΔ ABC =?

В С

Найдите площадь дачного участка такой формы.



Определение и свойства параллелограмма

- ^ А какие Вы знаете свойства? (сторон, углов, диагоналей).

- Дети, Вы всё знаете о данной фигуре? (нет, площадь).

- Площадь каких фигур Вы знаете? (Sкв2; Sпрям=а*b).

- А Вы знаете, чему равна площадь параллелограмма? (нет).

- О чём мы сегодня будем говорить на уроке геометрии? (Sпарал).

Итак, вы сегодня на уроке будет учениками «Евклида» и исследуете параллелограмм и докажите чему равна площадь параллелограмма.

^ 4. Объяснение нового материала

Вывод формулы площади параллелограмма.



Задача.

Как «перекроить» параллелограмм, чтобы получить прямоугольник с такой же площадью?




После вывода формулы учитель требует ее словесное описание. Несколько учеников «проговариваются» вслух, тем самым, развивая математическую речь.

Найти площадь фигуры.

Теорема о площади ромба по его диагоналям.



Площадь ромба равна половине произведения его диагоналей.

Рассмотреть доказательство теоремы на с. 142.

^ 5. Минутки релаксации:

  • Быстро поморгать, закрыть глаза и посидеть спокойно, медленно считая до пяти. Повторить 4-5 раз.

  • Вытянуть правую руку вперёд. Следить глазами, не поворачивая головы, за медленным движением указательного пальца вытянутой руки влево и вправо, вверх и вниз. Повторить 4-5 раз.

  • В среднем темпе проделать 3-4 круговых движения глазами в правую сторону, столько же в левую сторону. Расслабив глазные мышцы, посмотреть вдаль на счет 1-6. Повторить 1-2 раза.

^ 6. Первичное закрепление нового материала.

Решить:

устно № 721, 722, 723, 724;

письменно № 725 (1, 2), 726(1, 2), 727(1, 2), 732, 743(1).

7. Самостоятельная работа учащихся.

Решить № 725(3), 726(3).

8. Итог урока.

9. Рефлексия. Д/з.

Выучить п.17, решить № 727(3, 4), 743(2), 729(1).


Урок геометрии в 8-м классе по теме "Площадь треугольника"

Цели урока:

  • Повторить свойства площадей фигур; формулы площади прямоугольника и квадрата, параллелограмма. ромба; вывести формулу для нахождения площади треугольника; рассмотреть задачи с её применением.

  • Развивать умения анализировать, сопоставлять, логически мыслить, обобщать; развивать внимание, память, активность и самостоятельность.

  • Воспитывать ответственное отношение к учебному труду, настойчивость для достижения конечного результата, умение работать в коллективе; воспитывать в учащихся личностную рефлексию: стал ли он сам для себя изменяющимся субъектом деятельности.

Ход урока.

^ 1. Организационный момент.

2. Мотивация урока.

3. Актуализация опорных знаний. Проверка д/з.

Дан периметр параллелограмма ABCD равный 80 см, высота ВН = 3 см. А стороны относятся как 2:3. Найдите Площадь параллелограмма.
  1   2   3




Похожие:

Урок в 8-м классе по теме Многоугольник и его элементы iconУрок математики в 5-м классе по теме «Составные числа»
Урок изучения составных чисел (по учебнику А. Г. Ванцяна) находится в разделе «Элементы теории чисел», который помимо самостоятельной...
Урок в 8-м классе по теме Многоугольник и его элементы iconУрок информатики и икт в 11 классе по теме: Логические основы устройства компьютера. Базовые логические элементы
Моу «Темповская средняя общеобразовательная школа Ртищевского района Саратовской области»
Урок в 8-м классе по теме Многоугольник и его элементы iconДомашнее задание по теме «Площади многоугольников»
...
Урок в 8-м классе по теме Многоугольник и его элементы iconУрок технологии в 1-м классе по теме: "Изготовление поздравительной открытки"
Познакомить детей с народным творчеством, с созданием народных орнаментов; научить различать элементы цветов и узора, их форму, расположение,...
Урок в 8-м классе по теме Многоугольник и его элементы iconУрок по теме: «Африка». 9 урок Продолжительность учебного занятия
Развивать кругозор, познавательные интересы учащихся, элементы творческой деятельности
Урок в 8-м классе по теме Многоугольник и его элементы iconУрок информатики в 5 «Б» классе по теме
Сформировать представление у учащихся о понятии алгоритма, выделить его свойства
Урок в 8-м классе по теме Многоугольник и его элементы iconУрок №21 физики в 7 классе Тема: «Расчет массы и объема тела по его плотности»
Постановка вопроса: какую тему изучаем, что уже знаем, умеем по этой теме. Над чем еще необходимо поработать и как построим урок
Урок в 8-м классе по теме Многоугольник и его элементы iconУрок физики в 8 классе
Ребята! Сегодня мы с вами проведем повторительно – обобщительный урок по теме: «Агрегатные превращения вещества», но проведем мы...
Урок в 8-м классе по теме Многоугольник и его элементы iconУрок №1 Выпуклый многоугольник

Урок в 8-м классе по теме Многоугольник и его элементы iconУрок по теме «What are the British like?»
Урок по теме «What are the British like?» в 8 классе по учебнику Кузовлева В. П. проведен в ноябре 2008 г учителем английского языка...
Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©lib2.podelise.ru 2000-2013
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации
Документы