Урок 13 Тема уроку icon

Урок 13 Тема уроку



НазваниеУрок 13 Тема уроку
Дата конвертации28.12.2013
Размер69.93 Kb.
ТипУрок
источник
1. /алгебра-10/al_roganin_10_urok_01.doc
2. /алгебра-10/al_roganin_10_urok_02.doc
3. /алгебра-10/al_roganin_10_urok_03.doc
4. /алгебра-10/al_roganin_10_urok_04.doc
5. /алгебра-10/al_roganin_10_urok_05.doc
6. /алгебра-10/al_roganin_10_urok_06.doc
7. /алгебра-10/al_roganin_10_urok_07.doc
8. /алгебра-10/al_roganin_10_urok_08.doc
9. /алгебра-10/al_roganin_10_urok_09.doc
10. /алгебра-10/al_roganin_10_urok_10.doc
11. /алгебра-10/al_roganin_10_urok_11.doc
12. /алгебра-10/al_roganin_10_urok_12.doc
13. /алгебра-10/al_roganin_10_urok_13.doc
14. /алгебра-10/al_roganin_10_urok_14.doc
15. /алгебра-10/al_roganin_10_urok_15.doc
16. /алгебра-10/al_roganin_10_urok_16.doc
17. /алгебра-10/al_roganin_10_urok_17.doc
18. /алгебра-10/al_roganin_10_urok_18.doc
19. /алгебра-10/al_roganin_10_urok_19.doc
20. /алгебра-10/al_roganin_10_urok_20.doc
21. /алгебра-10/al_roganin_10_urok_21.doc
22. /алгебра-10/al_roganin_10_urok_22.doc
23. /алгебра-10/al_roganin_10_urok_23.doc
24. /алгебра-10/al_roganin_10_urok_24.doc
25. /алгебра-10/al_roganin_10_urok_25.doc
26. /алгебра-10/al_roganin_10_urok_26.doc
27. /алгебра-10/al_roganin_10_urok_27.doc
28. /алгебра-10/al_roganin_10_urok_28.doc
29. /алгебра-10/al_roganin_10_urok_29.doc
30. /алгебра-10/al_roganin_10_urok_30.doc
31. /алгебра-10/al_roganin_10_urok_31.doc
32. /алгебра-10/al_roganin_10_urok_32.doc
33. /алгебра-10/al_roganin_10_urok_33.doc
34. /алгебра-10/al_roganin_10_urok_34.doc
35. /алгебра-10/al_roganin_10_urok_35.doc
36. /алгебра-10/al_roganin_10_urok_36.doc
37. /алгебра-10/al_roganin_10_urok_37.doc
38. /алгебра-10/al_roganin_10_urok_38.doc
39. /алгебра-10/al_roganin_10_urok_39.doc
40. /алгебра-10/al_roganin_10_urok_40.doc
41. /алгебра-10/al_roganin_10_urok_41.doc
42. /алгебра-10/al_roganin_10_urok_42.doc
43. /алгебра-10/al_roganin_10_urok_43.doc
44. /алгебра-10/al_roganin_10_urok_44.doc
45. /алгебра-10/al_roganin_10_urok_45.doc
46. /алгебра-10/al_roganin_10_urok_46.doc
47. /алгебра-10/al_roganin_10_urok_47.doc
48. /алгебра-10/al_roganin_10_urok_48.doc
49. /алгебра-10/al_roganin_10_urok_49.doc
50. /алгебра-10/al_roganin_10_urok_50.doc
51. /алгебра-10/al_roganin_10_urok_51.doc
52. /алгебра-10/al_roganin_10_urok_52.doc
53. /алгебра-10/al_roganin_10_urok_53.doc
54. /алгебра-10/al_roganin_10_urok_54.doc
55. /алгебра-10/al_roganin_10_urok_55.doc
56. /алгебра-10/al_roganin_10_urok_56.doc
57. /алгебра-10/al_roganin_10_urok_57.doc
58. /алгебра-10/al_roganin_10_urok_58.doc
59. /алгебра-10/al_roganin_10_urok_59.doc
60. /алгебра-10/al_roganin_10_urok_60.doc
61. /алгебра-10/al_roganin_10_urok_61.doc
62. /алгебра-10/al_roganin_10_urok_62.doc
63. /алгебра-10/al_roganin_10_urok_63-70.doc
Урок 1 Тема уроку
Урок 2 Тема уроку
Урок 3 Тема уроку: Побудова графіків функцій за допомогою геомет­ричних перетворень
Урок 4 Тема уроку
Урок 5 Тема уроку
Урок 6 Тема уроку
Урок 7 Тема уроку
Урок 8 Тема уроку
Урок 9 Тема уроку
Урок 10 Тема уроку
Контрольна робота № Мета уроку: Перевірити знання, уміння і навички учнів з вивче­ної теми
Урок 12 Тема уроку
Урок 13 Тема уроку
Урок 14 Тема уроку
Урок 15 Тема уроку
Контрольна робота № Мета уроку
Урок 17 Тема уроку
Урок 18 Тема уроку
Урок 19 Тема уроку
Урок 20 Тема уроку
Урок 21 Тема уроку
Урок 22 Тема уроку
Урок 23 Тема уроку
Урок 24 Тема уроку
Урок 25 Тема уроку
Урок 26 Тема уроку: Розв'язування дробово-раціональних рівнянь. Мета уроку: Познайомити учнів з розв'язуванням дробово-раціо­нальних рівнянь
Урок 27 Тема уроку
Урок 28 Тема уроку
Урок 29 Тема уроку
Урок 30 Тема уроку
Урок 31 Тема уроку
Контрольна робота № Мета уроку: Перевірити знання, уміння і навички учнів з теми «Тригонометричні рівняння і нерівності»
Урок 33 Тема уроку: Корінь п -го степеня. Арифметичний корінь п -го сте­пеня І його властивості. Мета уроку: Повторити
Урок 34 Тема уроку
Урок 35 Тема уроку
Урок 36 Тема уроку: Дії над радикалами. Мета уроку: Познайомити учнів з діями над радикалами: дода­вання І
Урок 37 Тема уроку
Урок 38 Тема уроку
Урок 39 Тема уроку
Урок 40 Тема уроку
Урок 41 Тема уроку
Контрольна робота № Мета уроку: Перевірити знання, уміння і навички учнів з теми «Степенева функція»
Урок 43 Тема уроку
Урок 44 Тема уроку
Урок 45 Тема уроку
Урок 46 Тема уроку
Урок 47 Тема уроку
Урок 48 Тема уроку
Урок 49 Тема уроку
Урок 50 Тема уроку
Урок 51 Тема уроку
Контрольна робота № Мета уроку: Перевірити знання, уміння і навички учнів з теми «По­казникова функція»
Урок 53 Тема уроку
Урок 54 Тема уроку
Урок 55 Тема уроку
Урок 56 Тема уроку
Урок 57 Тема уроку
Урок 58 Тема уроку
Урок 59 Тема уроку
Урок 60 Тема уроку
Урок 61 Тема уроку
Контрольна робота № Мета уроку: Перевірити знання, уміння і навички учнів з теми «Ло­гарифмічна функція»
Уроку

УРОК 13

Тема уроку: Формули тригонометричних функцій суми і різниці двох чисел. Тригонометричні функції подвійного і по­ловинного аргументу.

Мета уроку: Вивчення формул тригонометричних функцій суми і різниці двох чисел, формул тригонометричних функцій подвійного і половинного аргументу. Фор­мування умінь застосовувати вивчені формули для спрощення виразів та обчислень.

І. Перевірка домашнього завдання.

Розв'язання вправ, аналогічних до домашніх: вправа № 40 (11), 44 (3).

II. Сприймання і усвідомлення формул суми і різниці двох чисел.

1. Розглянемо, як пов'язані косинус різниці двох чисел із сину­сом і косинусом цих самих чисел.

На одиничному колі позначимо точки Рα і Рβ (α > β) проведемо вектори і , тоді (соs α; sіn α),

(соs β; sіn β) (рис. 101).

Знайдемо скалярний добуток векторів і , двома способами:

1) · = соs α · соs β + sіn α · sіn β;

2) · = · · соs (α – β) = 1·1соs (α – β) = соs (α – β).

Звідси маємо, що


соs (α – β) = соs α · соs β + sіn α · sіn β. (1)

Користуючись одержаною формулою, можна одержати інші формули:

соs (α + β) = соs α · соs β – sіn α · sіn β; (2)

sіn (α + β) = sіn α · соs β + соs α · sіn β; (3)

sіn (α – β) = sіn α · соs β – соs α · sіn β; (4)

(5)

(6)

Змінивши в формулі (1) β на –β і врахувавши, що соs(-β) = соs β, sіn(-β) = -sіnβ, одержимо

соs(α + β) = соs(α - (-β)) = соsα · соs(-β) + sіnα · sіn(-β) = соsα · соsβ – sіnα · sіnβ;

= sinα · cosβ + cosα · sinβ.

Таким чином,

sіn(α + β) = sіn α · соs β + соs α · sіn β

Змінивши в останній формулі β на – β одержимо:

sin(α - β) = sіn α · соs(-β) + соs α · sіn(-β)

Звідси sіn(α – β) = sіn α · соs β – соs α · sіn β


Виведемо формулу тангенса суми чисел:

.

Отже

Змінивши β на – β, одержимо

Виконання вправ ____________________


1. Знайдіть значення виразів:

а) соs 42° соs 18° – sіn 42°sіn 18°; б) ;

в) sіn 56° соs 34° + соs 56° sіn 34°; г) ;

д) ; є) .

2. Спростіть вирази:

а) sіn(α + β) – sіn α · соs β; б) ;

в) .

Відповідь: а) соs α · sіn β; б) sіn 2α;

в) .

3. Обчисліть: а) соs 75°; б) tg 15°; в) сtg 75°; г) sіn ..

Відповідь: а) ; б) tg15° = tg (45° - 30°) = 2 - ; в) 2 - ; г) .

III. Сприймання і усвідомлення тригонометричних функцій подвійного аргументу.

Демонструється таблиця “Тригонометричні функції подвійного аргументу” (табл. 6).

Таблиця 6
Тригонометричні функції подвійного аргументу

sіn 2α = 2sіn α соs α

соз 2α = соs2 α - sіn2 α
Коментарі вчителя

Виведемо формули, які виражають тригонометричні функції аргументу 2α через функції аргументу α.

Скористаємося формулою sіn(α + β) = sіn α · соs β + соs α · sіn β.

Вважаючи β = α, маємо:

sіn 2α = 2sіn α · соs α.

Аналогічно із формули соs(α + β) = соs α · соs β – sіn α · sіn β при α = β одержуємо:

соs 2α = соs2 α – sin2 α.

Із формули при β = α, маємо: .

Виконання вправ

1. Обчисліть:

а) 2sin15° соs15°; б) соs215° – sіn215°; в) ; г) (соs 75° – sіn 75°).

Відповідь: а) ; б) ; в) ; г) .

2. Обчисліть sіn 2α, якщо а) sin α = ; < α < π; б) соs α = ; π < α < .

Відповідь: а) ; б) .

3. Спростіть:

а) sіn α соs α; б) соs α · соs ; в) 2соs23α – 1;

г) 1 – 2sin2 5α; д) соs 4α + sіn2 2α; є) sіn 2α + (sin α – соs α)2.




Відповідь: а) sin2α; б) sіn2α; в) соs 6α; г) соs 10α; д) соs2α; є) 1.

4. Доведіть тотожності:

а) 2соs2 α – соs 2α = 1; б) ;

в) ; г) .

IV. Сприймання і усвідомлення тригонометричних функцій половинного аргументу.

За відомими значеннями тригонометричних функцій аргументу а можна знайти значення тригонометричних функцій аргументу якщо відомо, у якій чверті лежить кут α.

Із формули соs 2x = соs2х - sіn2x при х = , одержуємо:

соs α = соs2 – sіn2 . (1)

Запишемо основну тригонометричну тотожність у вигляді:

1 = соs2 + sin2. (2)

Складаючи почленно рівності (2) і (1) й віднімаючи почленно із рівності (2) рівність (1), одержуємо:

1+ соs α = 2соs2 ; (3)

1 – соs α = 2sіn2 . (4)

Формули (3) і (4) можна записати так:

(5)

(6)

Формули (5) і (6) називають формулами синуса і косинуса половинного аргументу. Ці формули називають також форму­лами зниження степеня.


Виконання вправ

1. Знайдіть числові значення виразу:

а) 2соs2 – 1; б) 1 – 2sin2 ; в) + 2sіn215°; г) - + 2соs215°. Відповідь: а) ; б) ; в) 1; г) 1.

2. Нехай соs α = 0,6 і 0 < α < . Обчисліть: а) sin ; б) соs ; в) tg .

Відповідь: а) ; б) ; в) .

3. Обчисліть: а) sіn 15°; б) соs 15°; в) tg 22°30'.

Відповідь: а) ; б) ; в) .

4. Спростіть:

а) ; б) .

Відповідь: а) 2соs α; б) tg α.

5. Доведіть тотожності:

а) ; б) ; в) .


V. Підведення підсумків уроку.

VI. Домашнє завдання.

Розділ І § 10 (1; 3; 4). Запитання і завдання для повторення до розділу І № 63—65, 67, 68. Вправа: № 51 (1, 2, 3, 6, 7). Розгля­нути приклади 1 (1-4), 2 (1-5), 3 (1-4), стор. 77-82.




Роганін Алгебра 10 клас, Урок 13




Похожие:

Урок 13 Тема уроку iconУрок №5 Тема уроку
Мета уроку. Удосконалювати уміння учнів розв’язувати задачі на знаходження добутку вектора на число
Урок 13 Тема уроку iconУрок №1 Тема уроку
Мета уроку: Познайомити учнів з поняттям вектора, його абсолютною величиною, ввести поняття колінеарних, рівних векторів
Урок 13 Тема уроку iconУрок 1/1 Тема. Електризація тіл. Два роди електричних зарядів
Мета уроку: познайомити учнів із явищем електризації тіл; довести існування двох типів зарядів і пояснити їхню взаємодію тип уроку:...
Урок 13 Тема уроку iconКонспект інтегрованого уроку (українська мова й основи здоров’я) у 4 класі Автор: вчитель-методист Донецької зош №97 Федорченко Т. А. Тема уроку
Тема уроку. Закріплення знань, умінь І навичок з теми “Іменник”. Складові здорового способу життя
Урок 13 Тема уроку iconУроку Тема І тип уроку Дата проведення 1/1 Роль фізичного знання в житті людини І суспільному розвитку. Комбінований урок
Фізичні величини. Одиниці фізичних величин. Міжнародна система одиниць. Утворення кратних І частинних одиниць. Вимірювмання фізичних...
Урок 13 Тема уроку iconУрок №7 Тема уроку
Мета уроку : Систематизувати і узагальнити знання учнів за темою «Вектори». Розвивати практичні вміння, знання та навички при розв´язанні...
Урок 13 Тема уроку iconПлан-конспект уроку фізичної культури з елементами футболу для учнів 4-го класу. Тема уроку : Чарівний світ футболу. Завдання уроку
Шикування, привітання, рапорт, повідомлення завдань уроку. Техніка безпеки на уроці
Урок 13 Тема уроку iconУрок №4 Тема уроку
Мета уроку: дати означення добутку вектора на число та колінеарних векторів; вміти знаходити координати вектора за координатами вектора,...
Урок 13 Тема уроку iconУрок №3 Тема уроку : Додавання та
Мета уроку: Ввести поняття суми та різниці двох векторів, розглянути закони додавання векторів, навчити будувати суму та різницю...
Урок 13 Тема уроку iconУрок №6 Тема уроку
Мета уроку: Дати означення скалярного добутку векторів, наслідок з нього ‌‌, розподільної властивості, означення кута між векторами,...
Урок 13 Тема уроку iconУрок формирования новых знаний Форма урока: мультимедиа урок Тема урока: «Калькулятор помощник математиков»
Проверка готовности учащихся к уроку, отметка отсутствующих, объявление темы и цели урока
Разместите кнопку на своём сайте:
Документы


База данных защищена авторским правом ©lib2.podelise.ru 2000-2013
При копировании материала обязательно указание активной ссылки открытой для индексации.
обратиться к администрации
Документы